Matemáticas

Serie 5

Responda a CINCO de las seis cuestiones siguientes. En las respuestas, explique siempre qué quiere hacer y por qué.

Cada cuestión vale 2 puntos.

Puede utilizar calculadora, pero no se permite el uso de calculadoras u otros aparatos que pueden almacenar datos o que pueden transmitir o recibir información.

- 1. Considere las rectas y = x e y = 2x, y la parábola $y = x^2$.
 - *a*) Calcule los puntos de intersección entre las gráficas de las diferentes funciones y haga un esbozo de la región delimitada por las gráficas.
 - b) Calcule el área de la región del apartado anterior.[1 punto]
- 2. Considere la matriz $A = \begin{pmatrix} 1 & 0 & a-1 \\ 1 & a & 1 \\ 4 & 3a & 1 \end{pmatrix}$, donde a es un parámetro real.
 - *a*) Encuentre los valores del parámetro *a* para los cuales la matriz es invertible. [1 punto]
 - **b**) Discuta la posición relativa de los planos π_1 : x + (a 1)z = 0, π_2 : x + ay + z = 1 y π_3 : 4x + 3ay + z = 3 en función de los valores del parámetro a. [1 punto]
- 3. Sean las matrices $\mathbf{A} = \begin{pmatrix} 2 & -1 \\ -6 & 3 \end{pmatrix}$ y $\mathbf{B} = \begin{pmatrix} 1 & 1 \\ 2 & 2 \end{pmatrix}$.
 - a) Calcule $A \cdot B y B \cdot A$. [1 punto]
 - **b)** Justifique que si el producto de dos matrices cuadradas no nulas tiene por resultado la matriz nula, entonces el determinante de ambas matrices tiene que ser cero. [1 punto]

- **4.** Considere la función $f(x) = \frac{1}{1+x^2}$.
 - a) Calcule la ecuación de la recta tangente a la gráfica en aquellos puntos en los que la recta tangente es horizontal.
 [1 punto]
 - **b)** Calcule las coordenadas del punto de la gráfica de la función f(x) en que la pendiente de la recta tangente es máxima. [1 punto]
- 5. Sean P, Q y R los puntos de intersección del plano de ecuación x + 4y + 2z = 4 con los tres ejes de coordenadas OX, OY y OZ, respectivamente.
 - *a*) Calcule los puntos *P*, *Q* y *R*, y el perímetro del triángulo de vértices *P*, *Q* y *R*. [1 punto]
 - **b**) Calcule el área del triángulo de vértices *P*, *Q* y *R*. [1 punto]

Nota: Para calcular el área del triángulo definido por los vectores \boldsymbol{v} y \boldsymbol{w} puede usar la expresión $S = \frac{1}{2} \|\boldsymbol{v} \times \boldsymbol{w}\|$, donde $\boldsymbol{v} \times \boldsymbol{w}$ es el producto vectorial de los vectores \boldsymbol{v} y \boldsymbol{w} .

- **6.** Considere la función $f(x) = \frac{\ln(x)}{x}$.
 - a) Calcule el dominio de la función f, los puntos de corte de la gráfica de f con los ejes de coordenadas, y los intervalos de crecimiento y decrecimiento de f.
 [1 punto]
 - **b)** Calcule el área de la región del plano determinada por la gráfica de la función f, las rectas x = 1 y x = e, y el eje de abscisas. [1 punto]

