

UNIVERSIDAD CARLOS III DE MADRID

PRUEBA DE ACCESO A LA UNIVERSIDAD PARA MAYORES DE 25 AÑOS Curso **2014–2015**

MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES 2

INSTRUCCIONES GENERALES Y VALORACIÓN

Instrucciones: El alumno contestará a los cuatro ejercicios de una de las dos opciones que se le ofrecen (A o B) y sólo a una. Debe dar respuestas concisas y justificar los argumentos empleados.

Valoración: La puntuación de cada ejercicio, así como la de cada apartado, se indica en el encabezamiento de los mismos.

Tiempo: 90 minutos.

OPCIÓN A

Ejercicio 1 (3 ptos.) Se dispone de 600 gr. de un determinado fármaco para elaborar pastillas grandes y pequeñas. Las grandes pesan 40 gr. y las pequeñas 30 gr. Se necesita elaborar al menos tres pastillas grandes, y al menos el doble de pequeñas que de las grandes. Cada pastilla grande proporciona un beneficio de 2 euros y la pequeña de 1 euro. ¿Cuántas pastillas se han de elaborar de cada clase para que el beneficio sea máximo?

Ejercicio 2 (3 ptos.) Calcule los siguientes límites:

a) 1 pto.

$$\lim_{x\to 0} [1+3x]^{\frac{2}{x}}$$

b) 2 ptos.

$$\lim_{x \to 1} \frac{\sqrt{x} - 1}{x - 1}$$

Ejercicio 3 (2 ptos.) Sean A y B dos sucesos tales que: $P[A^c] = 0.5$; $P[A \cap B] = 0.16$ y $P[A \cup B] = 0.82$. ¿Son los sucesos A y B independientes?

Ejercicio 4 (2 ptos.) Se desea estimar la media del tiempo empleado por un nadador en una prueba olímpica, para lo cual se cronometran 10 pruebas, obteniéndose una media de 41.5 minutos. Se sabe por otras pruebas que la desviación típica del tiempo empleado para este nadador es de 0.3 minutos, y que la variable que mide el tiempo del nadador sigue una distribución normal. Obtenga un intervalo de confianza con un 95% de confianza para el tiempo medio empleado por el nadador en esta prueba.

OPCIÓN B

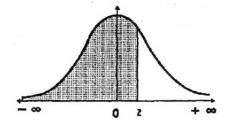
Ejercicio 1 (3 ptos.) Considere el sistema de ecuaciones

$$4x + 16y + az = -2$$

 $2x + 4y + 8z = 4$
 $x + y + z = 2$.

- a) 2 ptos. Clasifique el sistema en compatible determinado, compatible indeterminado o incompatible para los diferentes valores de $a \in R$.
- **b) 1 pto.** Seleccione un valor de *a* para el que el sistema sea compatible determinado y halle la solución del mismo.

Ejercicio 2 (3 ptos.) Sea


$$f(x) = 3x - x^3$$

- a) 1 pto. Halle los intervalos de creciemiento/decrecimiento de f y sus puntos máximos/mínimos.
- b) 1 pto. Halle los intervalos de curvatura de f y sus puntos de inflexión.
- c) 1 pto. Calcule el área entre f y el eje x en el intervalo [0,1].

<u>Ejercicio</u> **3** (2 ptos.) Se lanza un dado dos veces. ¿Cuál es la probabilidad de que en el primer lanzamiento resulte 3 y en el segundo lanzamiento un numero impar?

Ejercicio 4 (2 ptos.) La probabilidad de que haya un accidente en una fábrica que dispone de alarma es 0.1. La probabilidad de que suene la alarma si se ha producido algún accidente es de 0.97 y la probabilidad de que suene si no ha sucedido ningún accidente es 0.02. En el supuesto de que haya funcionado la alarma, ¿cuál es la probabilidad de que no haya habido accidente?

FUNCIÓN DE DISTRIBUCIÓN NORMAL N(0;1)

Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.99865	0.99869	0.99874	0.99878	0.99882	0.99886	0.99889	0.99893	0.99897	0.99900
3.1	0.99903	0.99906	0.99909		0.99916	0.99918	0.99921	0.99924	0.99926	0.99929
3.2	0.99931	0.99934	0.99936	0.99938	0.99940	0.99942	0.99944	0.99946	0.99948	0.99950
3.3	0.99952	0.99953	0.99955	0.99957	0.99958	0.99959	0.99961	0.99962	0.99964	0.99965
3.4	0.99966	0.99968	0.99969	0.99970	0.99971	0.99972	0.99973	0.99974	0.99975	0.99976
3.5	0.99977	0.99978	0.99978	0.99979	0.99980	0.99981	0.99981	0.99982	0.99983	0.99983
3.6	0.99984	0.99985	0.99985	0.99986	0.99986	0.99987	0.99987	0.99988	0.99988	0.99989
3.7	0.99989	0.99990	0.99990	0.99990	0.99991	0.99991	0.99991	0.99992	0.99992	0.99992
3.8	0.99993	0.99993	0.99993	0.99994	0.99994	0.99994	0.99994	0.99995	0.99995	0.99995
3.9	0.99995	0.99995	0.99996	0.99996	0.99996	0.99996	0.99996	0.99996	0.99997	0.99997
4.0	0.99997	0.99997	0.99997	0.99997	0.99997	0.99997	0.99998	0.99998	0.99998	0.99998

Nota: En el interior de la tabla se da la probabilidad de que la variable aleatoria Z, con distribución N(0;1), esté por debajo del valor z.