PRUEBA DE ACCESO A LA UNIVERSIDAD MAYORES DE 25 AÑOS

# PRUEBA ESPECÍFICA PRUEBA 2020



MATEMÁTICAS
PARA LAS CIENCIAS
SOCIALES Y DE
LA SALUD

**PRUEBA** 

SOLUCIONARIO



2020

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA MAYORES DE 25 AÑOS

2020

GIZARTE- ETA OSASUN-ZIENTZIETARAKO MATEMATIKA MATEMÁTICAS PARA LAS CIENCIAS SOCIALES Y DE LA SALUD

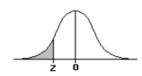
**Aclaraciones previas:** Tiempo de duración de la prueba: 1 hora Contesta a **cinco** de los seis ejercicios propuestos (cada ejercicio vale 2 puntos).

- 1. Un alumno ha estudiado 15 de los 25 temas de los que va a ser examinado. Se extraen al azar dos de los temas y el alumno elige entre ellos uno de los dos. Halla la probabilidad de que el alumno pueda elegir uno de los 15 temas que ha estudiado.
- 2. Dos ciudades A y B distan entre ellas 255 km. Un coche parte de A hacia B a 90 km/h y, al mismo tiempo, otro de B hacia A a 80 km/h. Suponiendo que ambos circulan a velocidad constante calcula el tiempo que tardan en encontrarse y la distancia recorrida por cada uno de ellos hasta ese momento.
- 3. Hallar el área de recinto que delimitan las siguientes funciones:

$$f(x) = -x^2 + 2$$
  $y$   $g(x) = x^2$ 

- **4.** a) Obtén los máximos y mínimos de la función:  $f(x) = \frac{x^3}{(x-1)^2}$ 
  - b) Realiza un dibujo aproximado de la función
- **5.** Una facultad tiene 300 alumnos cuyo peso medio es 70 kg y la desviación típica 5 kg. Suponiendo que los pesos se distribuyen normalmente, hallar cuántos estudiantes pesan:
  - a. Entre 60 kg y 80 kg
  - b. Menos de 55 kg
- 6. Se lanzan simultáneamente 2 dados,
  - a) Señala cuáles son los resultados posibles
  - b) Di cuál es el resultado más probable y el porqué
  - c) ¿Cuál es la probabilidad de que al lanzar los dos dados no obtengamos ningún resultado par?






PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA MAYORES DE 25 AÑOS

2020

GIZARTE- ETA OSASUN-ZIENTZIETARAKO MATEMATIKA MATEMÁTICAS PARA LAS CIENCIAS SOCIALES Y DE LA SALUD

2020



# TABLA I (A) DISTRIBUCIÓN NORMAL TIPIFICADA N(0, 1)

La tabla proporciona, para cada valor de z, el área que queda a su izquierda.

| z    | 0'00    | 0'01    | 0'02    | 0'03    | 0'04    | 0'05    | 0'06    | 0'07    | 0'08    | 0'09    |
|------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| -4'4 | 0'00001 | 0'00001 | 0'00001 | 0'00000 | 0'00000 | 0'00000 | 0'00000 | 0'00000 | 0'00000 | 0'00000 |
| -4'3 | 0'00001 | 0'00001 | 0'00001 | 0'00001 | 0'00001 | 0'00001 | 0'00001 | 0'00001 | 0'00001 | 0'00001 |
| -4'2 | 0'00001 | 0'00001 | 0'00001 | 0'00001 | 0'00001 | 0'00001 | 0'00001 | 0'00001 | 0'00001 | 0'00001 |
| -4'1 | 0'00002 | 0'00002 | 0'00002 | 0'00002 | 0'00002 | 0'00002 | 0'00002 | 0'00002 | 0'00002 | 0'00001 |
| -4'0 | 0'00003 | 0'00003 | 0'00003 | 0'00003 | 0'00003 | 0'00003 | 0'00002 | 0'00002 | 0'00002 | 0'00002 |
| -3'9 | 0'00005 | 0'00005 | 0'00004 | 0'00004 | 0'00004 | 0'00004 | 0'00004 | 0'00004 | 0'00003 | 0'00003 |
| -3'8 | 0'00007 | 0'00007 | 0'00007 | 0'00006 | 0'00006 | 0'00006 | 0'00006 | 0'00005 | 0'00005 | 0'00005 |
| -3'7 | 0'00011 | 0'00010 | 0'00010 | 0'00010 | 0'00009 | 0'00009 | 0'00009 | 0'00008 | 0'00008 | 80000'0 |
| -3'6 | 0'00016 | 0'00015 | 0'00015 | 0'00014 | 0'00014 | 0'00013 | 0'00013 | 0'00012 | 0'00012 | 0'00011 |
| -3'5 | 0'00023 | 0'00023 | 0'00022 | 0'00021 | 0'00020 | 0'00019 | 0'00019 | 0'00018 | 0'00017 | 0'00017 |
| -3'4 | 0'00034 | 0'00033 | 0'00032 | 0'00030 | 0'00029 | 0'00028 | 0'00027 | 0'00026 | 0'00025 | 0'00024 |
| -3'3 | 0'00049 | 0'00047 | 0'00045 | 0'00044 | 0'00042 | 0'00041 | 0'00039 | 0'00038 | 0'00036 | 0'00035 |
| -3'2 | 0'00069 | 0'00067 | 0'00064 | 0'00062 | 0'00060 | 0'00058 | 0'00056 | 0'00054 | 0'00052 | 0'00050 |
| -3'1 | 0'00097 | 0'00094 | 0'00091 | 0'00088 | 0'00085 | 0'00082 | 0'00079 | 0'00077 | 0'00074 | 0'00071 |
| -3'0 | 0'00135 | 0'00131 | 0'00127 | 0'00123 | 0'00119 | 0'00115 | 0'00111 | 0'00107 | 0'00104 | 0'00101 |
| -2'9 | 0'00187 | 0'00181 | 0'00175 | 0'00169 | 0'00164 | 0'00159 | 0'00154 | 0'00149 | 0'00144 | 0'00139 |
| -2'8 | 0'00256 | 0'00248 | 0'00240 | 0'00233 | 0'00226 | 0'00219 | 0'00212 | 0'00205 | 0'00199 | 0'00193 |
| -2'7 | 0'00347 | 0'00336 | 0'00326 | 0'00317 | 0'00307 | 0'00298 | 0'00289 | 0'00280 | 0'00272 | 0'00264 |
| -2'6 | 0'00466 | 0'00453 | 0'00440 | 0'00427 | 0'00415 | 0'00402 | 0'00391 | 0'00379 | 0'00368 | 0'00357 |
| -2'5 | 0'00621 | 0'00604 | 0'00587 | 0'00570 | 0'00554 | 0'00539 | 0'00523 | 0'00508 | 0'00494 | 0'00480 |
| -2'4 | 0'00820 | 0'00798 | 0'00776 | 0'00755 | 0'00734 | 0'00714 | 0'00695 | 0'00676 | 0'00657 | 0'00639 |
| -2'3 | 0'01072 | 0'01044 | 0'01017 | 0'00990 | 0'00964 | 0'00939 | 0'00914 | 0'00889 | 0'00866 | 0'00842 |
| -2'2 | 0'01390 | 0'01355 | 0'01321 | 0'01287 | 0'01255 | 0'01222 | 0'01191 | 0'01160 | 0'01130 | 0'01101 |
| -2'1 | 0'01786 | 0'01743 | 0'01700 | 0'01659 | 0'01618 | 0'01578 | 0'01539 | 0'01500 | 0'01463 | 0'01426 |
| -2'0 | 0'02275 | 0'02222 | 0'02169 | 0'02118 | 0'02068 | 0'02018 | 0'01970 | 0'01923 | 0'01876 | 0'01831 |
| -1'9 | 0'02872 | 0'02807 | 0'02743 | 0'02680 | 0'02619 | 0'02559 | 0'02500 | 0'02442 | 0'02385 | 0'02330 |
| -1'8 | 0'03593 | 0'03515 | 0'03438 | 0'03362 | 0'03288 | 0'03216 | 0'03144 | 0'03074 | 0'03005 | 0'02938 |
| -1'7 | 0'04457 | 0'04363 | 0'04272 | 0'04182 | 0'04093 | 0'04006 | 0'03920 | 0'03836 | 0'03754 | 0'03673 |
| -1'6 | 0'05480 | 0'05370 | 0'05262 | 0'05155 | 0'05050 | 0'04947 | 0'04846 | 0'04746 | 0'04648 | 0'04551 |
| -1'5 | 0'06681 | 0'06552 | 0'06426 | 0'06301 | 0'06178 | 0'06057 | 0'05938 | 0'05821 | 0'05705 | 0'05592 |
| -1'4 | 0'08076 | 0'07927 | 0'07780 | 0'07636 | 0'07493 | 0'07353 | 0'07214 | 0'07078 | 0'06944 | 0'06811 |
| -1'3 | 0'09680 | 0'09510 | 0'09342 | 0'09176 | 0'09012 | 0'08851 | 0'08692 | 0'08534 | 0'08379 | 0'08226 |
| -1'2 | 0'11507 | 0'11314 | 0'11123 | 0'10935 | 0'10749 | 0'10565 | 0'10383 | 0'10204 | 0'10027 | 0'09853 |
| -1'1 | 0'13567 | 0'13350 | 0'13136 | 0'12924 | 0'12714 | 0'12507 | 0'12302 | 0'12100 | 0'11900 | 0'11702 |
| -1'0 | 0'15866 | 0'15625 | 0'15386 | 0'15150 | 0'14917 | 0'14687 | 0'14457 | 0'14231 | 0'14007 | 0'13786 |
| -0'9 | 0'18406 | 0'18141 | 0'17879 | 0'17619 | 0'17361 | 0'17106 | 0'16853 | 0'16602 | 0'16354 | 0'16109 |
| -0'8 | 0'21186 | 0'20897 | 0'20611 | 0'20327 | 0'20045 | 0'19766 | 0'19489 | 0'19215 | 0'18925 | 0'18673 |
| -0'7 | 0'24196 | 0'23885 | 0'23576 | 0'23270 | 0'22965 | 0'22663 | 0'22363 | 0'22065 | 0'21770 | 0'21476 |
| -0'6 | 0'27425 | 0'27093 | 0'26763 | 0'26435 | 0'26109 | 0'25785 | 0'25463 | 0'25143 | 0'24825 | 0'24510 |
| -0'5 | 0'30854 | 0'30503 | 0'30153 | 0'29806 | 0'29550 | 0'29116 | 0'28774 | 0'28434 | 0'28096 | 0'27760 |
| -0'4 | 0'34446 | 0'34090 | 0'33724 | 0'33360 | 0'32997 | 0'32636 | 0'32276 | 0'31918 | 0'31561 | 0'31207 |
| -0'3 | 0'38209 | 0'37828 | 0'37448 | 0'37070 | 0'36693 | 0'36317 | 0'35942 | 0'35569 | 0'35197 | 0'34827 |
| -0'2 | 0'42074 | 0'41683 | 0'41294 | 0'40905 | 0'40517 | 0'40129 | 0'39743 | 0'39358 | 0'38974 | 0'38591 |
| -0'1 | 0'46017 | 0'45620 | 0'45234 | 0'44828 | 0'44433 | 0'44038 | 0'43644 | 0'43251 | 0'42858 | 0'42465 |
| -0'0 | 0'50000 | 0'49601 | 0'49202 | 0'48803 | 0'48405 | 0'48006 | 0'47608 | 0'47210 | 0'46812 | 0'46414 |
|      |         |         |         |         |         |         |         |         |         |         |

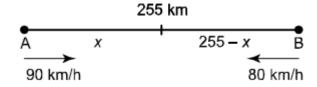


2020

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA MAYORES DE 25 AÑOS

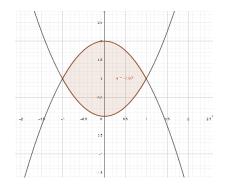
2020

MATEMÁTICAS PARA LAS CIENCIAS SOCIALES Y DE LA SALUD


# GIZARTE- ETA OSASUN-ZIENTZIETARAKO MATEMATIKA

# SOLUCIONARIO MATEMÁTICAS PARA LAS CIENCIAS SOCIALES Y DE LA SALUD (2020)

1.


$$P(al\ menos\ un\ tema) = 1 - P(ning\'un\ tema) = 1 - \frac{10}{25} \cdot \frac{9}{24} = 0.85$$

2. El que sale de A recorre una distancia x hasta encontrarse con el que parte de B



siendo 
$$e = v \cdot t$$

3.



$$\int_{-1}^{1} (-x^2 + 2 - x^2) dx$$

$$= \int_{-1}^{1} (-2x^2 + 2) dx$$

$$= \left[ \frac{-2x^3}{3} + 2x \right]_{-1}^{1}$$

$$= \frac{-2}{3} + 2 - \left( \frac{2}{3} - 2 \right) = \frac{8}{3} = 2,67 \ u^2$$

Solución: 2,67 u<sup>2</sup>

4.

$$Dom\left(f(x)\right) = \mathbb{R} - \{1\}$$

$$f'(x) = \frac{3x^2 \cdot (x-1)^2 - 2 \cdot (x-1) \cdot x^3}{(x-1)^4} = \frac{(x-1)(x^3 - 3x^2)}{(x-1)^4} = \frac{(x^3 - 3x^2)}{(x-1)^3}$$



2020

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA MAYORES DE 25 AÑOS

2020

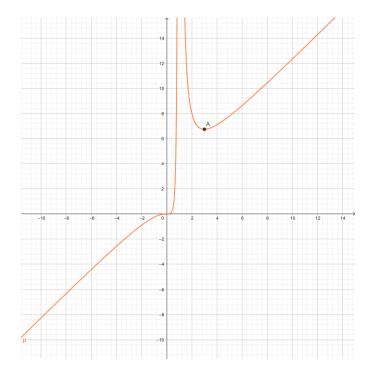
GIZARTE- ETA OSASUN-ZIENTZIETARAKO MATEMATIKA MATEMÁTICAS PARA LAS CIENCIAS SOCIALES Y DE LA SALUD

MATEMATIKA SALUD

Sus raices serán: 
$$\frac{(x^3 - 3x^2)}{(x - 1)^3} = 0 \rightarrow (x^3 - 3x^2) = 0 \rightarrow x^2(x - 3) = 0$$
,

por tanto  $\begin{cases} x_1 = 0 \\ x_2 = 3 \end{cases}$ 

Por tanto los valores 0,1 y 3 marcan cuatro intervalos:  $(-\infty,0)$ , (0,1), (1,3),  $(3,\infty)$ 


| Х     | $(-\infty,0)$ | (0,1) | (1,3) | (3,∞) |
|-------|---------------|-------|-------|-------|
| f'(x) | +             | +     | -     | +     |
|       | 7             | 7     | 7     | 7     |

Hay dos cambios de signo:

- de (0,1) a (1,3) pero lo descartamos porque tenemos una indeterminación
- de (1,3) a (3,∞) de decreciente a creciente luego en x=3 hay un mínimo

$$f(3) = \frac{3^3}{(3-1)^2} = \frac{27}{4} luego el mínimo es  $(3, \frac{27}{4})$$$

## Dibujo aproximado de la función:





2020

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA MAYORES DE 25 AÑOS

2020

# GIZARTE- ETA OSASUN-ZIENTZIETARAKO MATEMATIKA

MATEMÁTICAS PARA LAS CIENCIAS SOCIALES Y DE LA SALUD

a. Entre 60 kg y 80 kg

$$p[60 < X \le 80] = p\left(\frac{60 - 70}{5} < Z \le \frac{80 - 70}{5}\right) =$$

$$= p(-2 < Z \le 2) = p(Z \le 2) - [1 - p(Z \le 2)] =$$

$$= 0.97725 - (1 - 0.97725) = 0.9545$$

$$0,9545 \cdot 300 = 286,35 \approx 286$$

b. Menos de 55 kg

$$p(X < 55) = p\left(Z < \frac{55 - 70}{5}\right) = p(Z < 3)$$
$$1 - p(Z > 3) = 1 - 0,00865 = 0,00135$$

$$0.00135 \cdot 300 = 0.405 \approx \boxed{0}$$

6.

a) 2,3,4,5,6,7,8,9,10,11 y 12

b)

|   | 1 | 2 | 3 | 4  | 5  | 6  |
|---|---|---|---|----|----|----|
| 1 | 2 | 3 | 4 | 5  | 6  | 7  |
| 2 | 3 | 4 | 5 | 6  | 7  | 8  |
| 3 | 4 | 5 | 6 | 7  | 8  | 9  |
| 4 | 5 | 6 | 7 | 8  | 9  | 10 |
| 5 | 6 | 7 | 8 | 9  | 10 | 11 |
| 6 | 7 | 8 | 9 | 10 | 11 | 12 |

El 7 porque su probabilidad es  $P(7) = \frac{6}{36} = \frac{1}{6}$ 

$$p = \left(\frac{1}{2}\right)^2 = \boxed{\frac{1}{4}}$$



2020

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA MAYORES DE 25 AÑOS

2020

MATEMÁTICAS PARA LAS CIENCIAS SOCIALES Y DE LA SALUD

# GIZARTE- ETA OSASUN-ZIENTZIETARAKO MATEMATIKA

## **CRITERIOS GENERALES DE EVALUACIÓN**

- 1. El examen se valorará con una puntuación entre 0 y 10 puntos.
- 2. Todos los problemas tienen el mismo valor: hasta 2 puntos.
- 3. Se valora el planteamiento correcto, tanto global como de cada una de las partes, si las hubiere.
- 4. No se tomarán en consideración errores numéricos, de cálculo, etc., siempre que no sean de tipo conceptual.
- 5. Las ideas, gráficos, presentaciones, esquemas, etc., que ayuden a visualizar mejor el problema y su solución se valorarán positivamente.
- 6. Se valora la buena presentación del examen.

#### Criterios particulares para cada uno de los problemas

- 1. Para puntuar el problema se tendrán en cuenta:
  - Planteamiento del problema por medio del diagrama en árbol o similar (0,75 puntos)
  - Resolución adecuada del problema (1.25 puntos)
- 2. Para puntuar el problema se tendrán en cuenta:
  - Planteamiento del problema (1punto)
  - Solución del mismo (1 punto)
- 3. Para puntuar el problema se tendrán en cuenta:
  - Dibujo del recinto y obtención de los puntos de corte (1 punto)
  - Aplicación del Teorema de Barrow. (0,25 puntos)
  - Exactitud de los cálculos realizados. (0,75 puntos)
- 4. Para puntuar el problema se tendrán en cuenta:
  - Derivación correcta de la derivada (0.5 punto)
  - Discusión de los intervalos de crecimiento y obtención de puntos críticos (1 puntos)
  - Dibujo aproximado (0,5 puntos)
- 5. Para puntuar el problema se tendrán en cuenta:
  - Cálculos asociados a la distribución normal y la probabilidad pedida (1 punto por cada)
- 6. Para puntuar el problema se tendrán en cuenta:
  - a) (1 punto)
  - b) (1punto)



2020

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA MAYORES DE 25 AÑOS

2020

GIZARTE- ETA OSASUN-ZIENTZIETARAKO MATEMATIKA MATEMÁTICAS PARA LAS CIENCIAS SOCIALES Y DE LA SALUD

# CORRESPONDENCIA ENTRE LAS PREGUNTAS DE LA PRUEBA Y LOS INDICADORES DE CONOCIMIENTO

| Pregunta | Indicador de conocimiento |
|----------|---------------------------|
| 1        | 3.7 y 3.9                 |
| 2        | 1. 4 y 1.5                |
| 3        | 2.12 y 2.13               |
| 4        | 2.8; 2.9 y 2.11           |
| 5        | 3.6                       |
| 6        | 3.9                       |