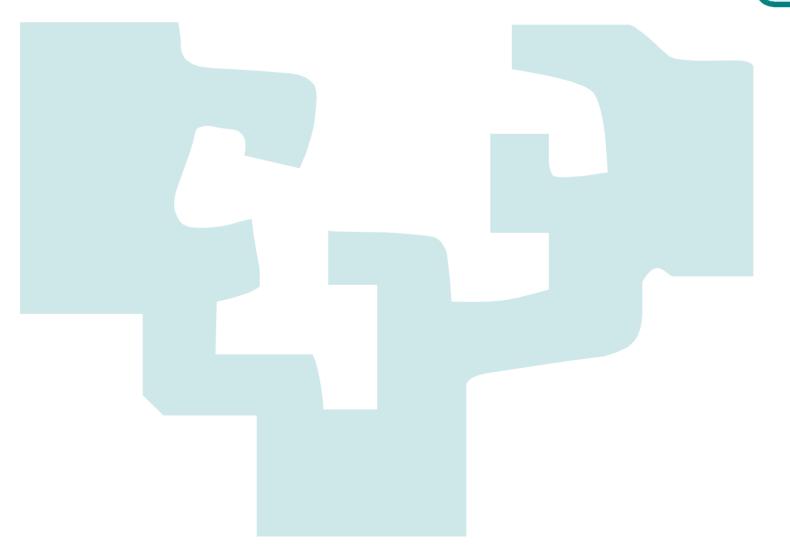
PRUEBA DE ACCESO A LA UNIVERSIDAD MAYORES DE 25 AÑOS


PRUEBA ESPECÍFICA PRUEBA 2019

QUÍMICA

PRUEBA

SOLUCIONARIO

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA MAYORES DE 25 AÑOS

2019ko MAIATZA

MAYO 2019

KIMIKA

QUÍMICA

Aclaraciones previas

Tiempo de duración de la prueba: 1 hora Contesta 4 de los 5 ejercicios propuestos (Cada ejercicio vale 2,5 puntos)

- 1. En un recipiente de 5 litros se tiene el gas dióxido de azufre (SO₂) a 17°C y a 1,2 atm de presión. Calcular:
 - a) El número de moles y moléculas de gas hay en dicho recipiente
 - b) La masa del gas y la densidad.
 - c) El número de moles del gas si estuviese en condiciones normales.
 - d) La composición centesimal.

Datos: Masas atómicas relativas S=32; O=16 Constante de los gases R = 0,082 atm mol⁻¹K⁻¹ Número de Avogadro N_A= 6,022·10²³ Volumen molar = 22,4 L

- 2. Dados estos cuatro átomos: F (Z=9; A=19), Na (Z=11; A=23), Cl (Z=17; A=35) y K (Z=19; A=39), contestar:
 - a) Significado de las letras Z y A de un átomo.
 - b) Halla el número de protones, neutrones y electrones de cada uno de los átomos y escribe su configuración electrónica.
 - c) A la vista de esta configuración, determina si son metales o no metales y el grupo o familia a la que pertenecen.
 - d) Establece los posibles enlaces iónicos o covalentes entre los átomos dados e indica si alguno de estos enlaces podría ser polar.
- 3. El butano (C_4H_{10}) se utiliza como combustible, tanto para cocinar como para tener calefacción y agua caliente. El butano se combina con el oxígeno para formar dióxido de carbono y agua, según la ecuación:

$$C_4H_{10}+ O_2 \rightarrow CO_2+ H_2O.$$

- a) Ajustar la reacción.
- b) Si haces reaccionar 23 g de butano con 96 g de dioxígeno, indicar cuál será el reactivo limitante y calcular la masa de CO₂ se desprenderá.

Datos: Masas atómicas relativas H = 1; C = 12; O = 16

- 4. En 500 mL de una disolución acuosa 0'1 M de NaOH.
 - a) ¿Cuál es la concentración de iones OH-?
 - b) ¿Cuál es la concentración de iones H₃O+?
 - c) ¿Cuál es el pH?

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA MAYORES DE 25 AÑOS

2019ko MAIATZA

MAYO 2019

KIMIKA

QUÍMICA

5. Responde a los siguientes apartados:

- A) Formula los compuestos siguientes:
 - a) hex-2-eno.
 - b) pentan-2-ol.
 - c) hepta-1,4-diino.
 - d) pentan-2-ona
 - e) ácido butanoico.
- B) El 2-metilpentanal y la 3-metil.2-pentanona son dos isómeros de fórmula molecular C₆H₁₂O.
 - a) Escribe las fórmulas desarrolladas de ambos
 - b) ¿Qué tipo de isomería tienen?

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA MAYORES DE 25 AÑOS

2019ko MAIATZA

MAYO 2019

KIMIKA

QUÍMICA

SOLUCIONARIO QUÍMICA (Mayo 2019)

1. SOLUCIÓN

a)
$$V = 5 L$$

$$T = 17 \, {}^{\circ}C \xrightarrow{+273} 290 \, K$$

P= 1,2 atm

$$P \cdot V = n \cdot R \cdot T \implies n = \frac{P \cdot V}{R \cdot T} = \frac{1.2 \text{ atm} \cdot 5 \text{ L}}{0.082 \text{ atm} \cdot \text{L mol}^{-1} \text{K}^{-1} \cdot 290 \text{ K}} = 0.252 \text{ moles}$$

$$N = n \cdot N_A = 0,252 \text{ moles} \cdot 6,022 \cdot 10^2 = 1,52 \cdot 10^{23} \text{ moléculas}$$

b) La masa molecular Mm (SO₂) = 64 g/mol

$$m = n \cdot Pm = 0,252 \text{ moles} \cdot 64 \text{ g/mol} = 16,128 \text{ gramos}$$

$$d = m/V = 16,128 g/5 L = 3,2256 g/L$$

Efectivamente: para calcular la densidad de un gas basta conocer la presión (P, en atm), la masa molecular del gas (M, g/mol), la constante de los gases ideales (R, atm·L/K·mol) y la temperatura (en K). Esta fórmula implica, por tanto, que, a unas determinadas condiciones de presión y temperatura, la densidad de un gas depende únicamente de su masa molecular.

$$P \cdot V = n \cdot R \cdot T$$

$$P \cdot V = \frac{m}{M_m} \cdot R \cdot T$$

$$P \cdot M_m = \frac{m}{V} \cdot R \cdot T = d \cdot R \cdot T$$

$$d = \frac{P \cdot V}{R \cdot T} = \frac{1,2 \text{ atm} \cdot 5 \text{ L}}{0.082 \text{ atm} \cdot L \text{ mol}^{-1} \text{K}^{-1} \cdot 290 \text{ K}} = 3,225 \text{ g/L}$$

c) En condiciones normales:

$$N = \frac{V}{V_m} = \frac{5 L}{22, 4 L/mol} = 0,223 moles$$

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA MAYORES DE 25 AÑOS

2019ko MAIATZA

MAYO 2019

KIMIKA

QUÍMICA

d) SO₂ La masa molecular Mm (SO₂) = 64 g/mol

% S =
$$\frac{32}{64} \cdot 100 =$$
50 %

% O =
$$\frac{16 \cdot 2}{64} \cdot 100 =$$
50 %

2. SOLUCIÓN

a) $Z = n^0$ atómico = n^0 de protones de un átomo (= n^0 de electrones en un átomo neutro).

 $A = n^{\circ}$ másico = n° de protones + n° de neutrones.

b) F: 9 protones, 9 electrones y 10 neutrones (= 19 - 9). Configuración electrónica: $1s^2 2s^2 2p^5$

Na: 11 protones 11 electrones y 12 neutrones (= 23 - 11). Configuración electrónica: $1s^2 2s^2 2p^6 3s^1$

Cl: 17 protones, 17 electrones y 18 neutrones (= 35 - 17). Configuración electrónica: $1s^2 2s^2 2p^6 3s^2 3p^5$

K: 19 protones, 19 electrones y 20 neutrones (= 39 - 19). Configuración electrónica: $1s^2 2s^2 2p^6 3s^2 3p^6 4s^1$

- c) El sodio (Na) y el potasio (K) son metales del grupo 1, por ser ns¹ su último subnivel, y el flúor y el cloro son no metales del grupo 17, por ser p⁵su último subnivel.
- d) El enlace iónico se daría al unirse uno de los metales con uno de los no metales.

El enlace covalente se daría al unirse entre sí dos no metales.

Los enlaces polares son enlaces covalentes entre átomos con distinta electronegatividad; en este caso solo podría tener polaridad el enlace entre un átomo de flúor y uno de cloro.

3. SOLUCIÓN

a) $2 C_4H_{10} + 13 O_2 \rightarrow 8 CO_2 + 10 H_2O$

b) Calculamos las masas molares de C₄H₁₀ y de O₂:

 $M(C_4H_{10}) = 58 \text{ g/mol}$; $M(O_2) = 32 \text{ g/mol}$

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA MAYORES DE 25 AÑOS

2019ko MAIATZA

MAYO 2019

KIMIKA

QUÍMICA

Las cantidades de sustancia iniciales son:

$$n(C_4H_{10}) = 23$$
 g de $C_4H_{10} \cdot 1$ mol de $C_4H_{10} / 58$ g de $C_4H_{10} = 0,4$ mol de C_4H_{10}

$$n(O_2) = 96 \text{ g de } O_2 \cdot 1 \text{ mol de } O_2 / 32 \text{ g de } O_2 = 3 \text{ mol de } O_2$$

La proporción estequiométrica indica que 2 moles de C₄H₁₀ reaccionan con 13 moles de O₂:

2 mol de C_4H_{10} / 13 mol de O_2 = 0,4 mol de C_4H_{10} / $n(O_2)$

Despejando, se obtiene que: $n(O_2) = 2,6$ mol de O_2

Como inicialmente tenemos 3 moles de O_2 \longrightarrow 2,6 < 3, por lo que el reactivo limitante es el C_4H_{10}

Para calcular la masa de CO₂ debemos partir de la masa del reactivo limitante, el C₄H₁₀:

$$M CO_2) = 23 g de C_4H_{10} \cdot \frac{1 \, \text{mol} \, C_4H_{10}}{58 \, g \, C_4H_{10}} \cdot \frac{8 \, \text{mol} \, CO_2}{2 \, \text{mol} \, C_4H_{10}} \cdot \frac{44 \, g \, CO_2}{1 \, \text{mol} \, CO_2} = 69.8 \, g de \, CO_2$$

4. SOLUCIÓN

a) Como el NaOH es una base fuerte, estará totalmente disociada en sus iones:

luego:
$$[OH^{-}] = 0'1 = 10^{-1}$$

- b) Como [H_3O+]. [OH^-] = 10^{-14} , tenemos que: [H_3O+] = 10^{-14} / 10^{-1} = 10^{-13}
- c) $pH = -log [H_3O+] = .log 10^{-13} = 13$

5. SOLUCIÓN

A) Formular

a) hex-2-eno: CH₃ - CH=CH - CH₂ - CH₂ - CH₃

b) pentan-2-ol : CH₃ - CH(OH) - CH₂ - CH₂ - CH₃

c) hepta-1,4-diino : $CH_3 - CH_2 - C \equiv C - CH_2 - C \equiv CH$

d) pentan-2-ona: CH₃ - CO - CH₂ - CH₂ - CH₃

e) ácido butanoico: CH3 - CH2 - CH2 - COOH

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA MAYORES DE 25 AÑOS

2019ko MAIATZA

MAYO 2019

KIMIKA

QUÍMICA

B) 2-metilpentanal:

3-metil-.2-pentanona

Son isómeros de función y de cadena. De función porque uno tiene la función aldehído y el otro la cetona. Además, son también isómeros de cadena, pues en el aldehído el grupo metilo está en la cadena en el carbono en posición 2 y en la cetona el grupo metilo está en el carbono de la cadena en posición 3.

CORRESPONDENCIA ENTRE LAS PREGUNTAS DE LA PRUEBA Y LOS INDICADORES DE CONOCIMIENTO

PREGUNTA	INDICADOR DE CONOCIMIENTO
1	1.2; 1.3
2	1.8; 1.9
3	2.2.
4	2.5
5	3.1; 3.2