PRUEBA DE ACCESO A LA UNIVERSIDAD MAYORES DE 25 AÑOS

PRUEBA ESPECÍFICA PRUEBA 2017

MATEMÁTICAS

PRUEBA

SOLUCIONARIO

2017ko MAIATZA

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA MAYORES DE 25 AÑOS

MAYO 2017

MATEMÁTICAS

MATEMATIKA

Contesta cinco de los seis ejercicios propuestos. (Cada ejercicio vale 2 puntos.)

- 1.- Hemos mezclado dos tipos de detergentes; el primero de 0,94 €/litro, y el segundo, de 0,86 €/litro, obteniendo 40 litros de mezcla a 0,89 €/litro. ¿Cuántos litros hemos puesto de cada clase?
- 2.- Entre todos los rectángulos de perímetro 12 cm. ¿cuál es el que tiene la diagonal de menor longitud?
- 3.-Calcular el área del recinto limitado por las parábolas

$$y = -x^2 + 4x$$
 ; $y = x^2 - 2x$.

4.- Estudia los intervalos de crecimiento y decrecimiento y los máximos y mínimos de la función y haz un dibujo aproximado de la función

$$f(x) = x^3 - 3x^2 + 3$$

5.- Dada una distribución estadística que viene dada por la siguiente tabla:

xi	61	64	67	70	73
Frecuencia (fi)	5	18	42	27	8

Calcula la moda, mediana, media y la desviación típica de la distribución.

6.- Resuelve el sistema y la ecuación exponencial

a)
$$x-y+z=3$$
$$2y+3z=15$$
$$3x+y=12$$
b)
$$4^{x+1}+2^{x+3}=320$$

2017ko MAIATZA **MATEMATIKA**

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA MAYORES DE 25 AÑOS

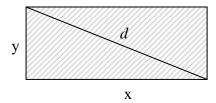
MAYO 2017

MATEMÁTICAS

SOLUCIONARIO MATEMÁTICAS (Mayo 2017)

1.-

SOLUCION


Planteando un sistema tenemos:

$$X+Y=40$$

0.94 $X+0.86Y=40.$ (0.89)

Resolviendo X = 15 litros e Y = 25 litros

2.-

SOLUCION

Perímetro: $2x + 2y = 12 \implies x + y = 6 \implies y = 6 - x$ (condición que se ha de cumplir)

Función a minimizar:
$$x^2 + y^2 = d^2 \implies d = \sqrt{x^2 + y^2} = \sqrt{x^2 + (6 - x)^2}$$

Es decir, $d(x) = \sqrt{2x^2 - 12x + 36}$ que es la función a estudiar.

$$d'(x) = \frac{4x - 12}{2\sqrt{2x^2 - 12x + 36}} = \frac{2x - 6}{\sqrt{2x^2 - 6x + 18}}$$

Igualando d'(x) a cero y resolviendo la ecuación resultante se obtiene x = 3

Segunda derivada:
$$d''(x) = \frac{2\sqrt{2x^2 - 6x + 18} - \frac{4x - 6}{2\sqrt{2x^2 - 6x + 18}}.(2x - 6)}{2x^2 - 6x + 18}$$

Valor de la segunda derivada para x = 3:

$$d''(3) = \frac{2\sqrt{2.3^2 - 18 + 18} - 0}{2.3^2 - 18 + 18} = \frac{2\sqrt{2.3^2}}{2.3^2} = \frac{\sqrt{2}}{3} > 0$$
 (mínimo, se trata de un cuadrado)

2017ko MAIATZA **MATEMATIKA**

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA MAYORES DE 25 AÑOS

MAYO 2017

MATEMÁTICAS

3.-

SOLUCION

- Límites de integración. $x^2 - 2x = -x^2 + 4x \rightarrow 2x^2 - 6x = 0 \rightarrow 2x(x - 3) = 0.$ Los límites son: 0 y 3. Un recinto.

- Función diferencia y primitiva. $f(x) - g(x) = x^2 - 2x + x^2 - 4x \rightarrow f(x) - g(x) = 2x^2 - 6x$ $G(x) = \int (2x^2 - 6x) dx = \frac{2x^3}{3} - 3x^2$

$$-G(3) y G(0)$$

$$G(3) = \frac{2x^3}{3} - 3x^2 = -9 \quad y G(0) = 0$$

- Área = G(3) - G(0) =
$$\left|-9\right|$$
 = 9
A = $\int_0^3 \left(2x^2 - 6x\right) dx = \left[\frac{2x^3}{3} - 3x^2\right]_0^3 = \left|-9\right|$ = 9 u²

4.-

SOLUCION

$$f(x) = x^3 - 3x^2 + 3$$

Vamos a estudiar los intervalos de crecimiento y decrecimiento que tiene.

Derivamos, obteniendo:

$$f'(x) = 3x^2 - 6x$$

Hallamos las raíces de la derivada:

$$f'(x) = 3x^2 - 6x = 3(x^2 - 2x) = 3x(x - 2)$$

Raíces: $x = 0$ y $x = 2$

Los **intervalos abiertos** con extremos las raíces de *f* ' serán:

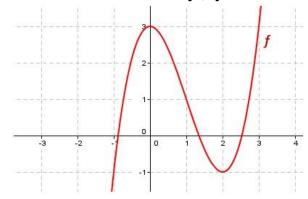
2017ko MAIATZA

MATEMATIKA

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA MAYORES DE 25 AÑOS

MAYO 2017

MATEMÁTICAS


$$]-\infty,0[$$
 , $]0,2[$ y $]2,+\infty[$

Estudiamos el **signo** que toma la derivada en los valores interiores de cada **intervalo**, por ejemplo en el -1, el 1 y el 3:

$$f'(-1) = 3 \cdot (-1)^2 - 6 \cdot (-1) = 3 \cdot 1 + 6 = 9 > 0$$
$$f'(1) = 3 \cdot 1^2 - 6 \cdot 1 = 3 - 6 = -3 < 0$$
$$f'(3) = 3 \cdot 3^2 - 6 \cdot 3 = 27 - 18 = 9 > 0$$

Hallamos que:

- f es creciente en $]-\infty,0[$ y en $]2,+\infty[$.
- f es decreciente en]0,2[.

5.-SOLUCION

x _i	fi	Fi	$x_i \cdot f_i$	$x_i^2 \cdot f_i$
61	5	5	305	18 605

2017ko MAIATZA

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA MAYORES DE 25 AÑOS

MAYO 2017

MATEMÁTICAS

MA	TEM	ΔΤΙ	KΛ
IVIA		AII	NA

64	18	23	1152	73 728
67	42	65	2814	188 538
71	27	92	1890	132 300
73	8	100	584	42 632
TOTAL	100		6745	455 803

Moda, Mo = 67

Mediana, 100/2 = 50, luego la mediana es Me = 67

Media

$$\bar{x} = \frac{6745}{100} = 67.45$$

Desviación media

$$D_{\bar{x}} = \frac{226.5}{100} = 2.265$$

6.-

SOLUCION

- a) Resolviendo X = Y = Z = 3
- b) X= 3

2017ko MAIATZA **MATEMATIKA**

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA MAYORES DE 25 AÑOS

MAYO 2017

MATEMÁTICAS

CRITERIOS GENERALES DE EVALUACIÓN.

- 1. El examen se valorará con una puntuación entre 0 y 10 puntos.
- 2. Todos los problemas tienen el mismo valor: hasta 2 puntos.
- 3. Se valora el planteamiento correcto, tanto global como de cada una de las partes, si las hubiere.
- 4. No se tomarán en consideración errores numéricos, de cálculo, etc., siempre que no sean de tipo conceptual.
- 5. Las ideas, gráficos, presentaciones, esquemas, etc., que ayuden a visualizar mejor el problema y su solución se valorarán positivamente. Se valora la buena presentación del examen.

Criterios particulares para cada uno de los problemas

Problema 1 (2 puntos)

- Planteamiento adecuado del problema. (1 punto)
- Resolución del problema: cálculos asociados (1 punto)

Problema 2 (2 puntos)

- Planteamiento de la condición de máximo (1 punto)
- Imponer la condición de máximo y calcular su valor por medio de la derivada(1 punto)

Problema 3 (2 puntos)

- Cálculo de la derivada, de los intervalos de crecimiento y decrecimiento y los puntos críticos (1.25 puntos)
- Realizar un dibujo aproximado de la función (0,75 puntos)

Problema 4 (2 puntos)

- Dibujo del recinto (1 puntos)
- Aplicación del Teorema de Barrow (0,25 puntos)
- Exactitud de los cálculos realizados(0.75 punto)

Problema 5 (2 puntos)

- Cálculo de la media, moda y mediana (1 punto).
- Cálculo de la desviación típica(1 punto)

Problema 6 (2 puntos)

Cada apartado vale 1 punto

CORRESPONDENCIA ENTRE LAS PREGUNTAS DE LA PRUEBA Y LOS INDICADORES DE CONOCIMIENTO

Pregunta	Indicador de conocimiento		
1	1.5 , 1.6, 1.7 y 1.9		
2	2.9, 2.10 y 2.11		
3	2.12 y 2.13		
4	2.9, 2.10 y 2.11		
5	4.1 y 4.2		
6	1.2 y 1.3		