

PAU (MAIORES DE 25 ANOS) MARZO 2017

QUÍMICA

CUESTIONES [2 puntos cada una] Resuelva <u>TRES</u> de las cuatro cuestiones

RAZONE las respuestas

- 1. Completa los siguientes equilibrios ácido-base de Brönsted-Lowry, indicando los correspondientes pares ácido-base conjugados:
 - (a)+ $H_2O = CO_3^{2-} + H_3O^+$
 - (b) $NH_4^+ + OH^- = H_2O + \dots$
- 2. (a) Escriba los nombres e identifique los grupos funcionales de las siguientes moléculas:

CH₃-CHOH-CH₃

CH₃-CO-CH₃

CH₃-COO-CH₃

CH₃-CH₂-NH₂

(b) Formule los siguientes compuestos:

2-metil-1-propanol

ácido butanoico

etino

propanal

- 3. Indique si a 25°C son verdaderas o falsas las afirmaciones siguientes:
 - (a) el ácido sulfúrico diluido reacciona con el cobre y se desprende hidrógeno.

Datos: $E^{0}(Cu^{2+}/Cu) = +0.34 \text{ V}$; $E^{0}(Cu^{+}/Cu) = +0.52 \text{ V}$ y $E^{0}(H^{+}/H_{2}) = 0.00 \text{ V}$.

(b) el sodio es muy reductor y el flúor es un poderoso oxidante.

Datos: $E^{0}(Na^{+}/Na) = -2,71 \text{ V}; E^{0}(F_{2}/F) = +2,87 \text{ V}.$

- 4. Para la molécula de CH₄:
 - (a) dibuje las estructuras de Lewis.
 - (b) indique la geometría según la teoría de repulsión de pares electrónicos de la capa de valencia (TRPEV).

PROBLEMAS [2 puntos cada uno]

Resuelva DOS de los tres problemas

- 1. Un mililitro de una disolución de ácido clorhídrico de densidad 1,19 g/mL y 37% de riqueza en peso se diluye con agua destilada hasta completar 100 mL. Calcule:
 - (a) la molaridad de esta disolución diluida de ácido clorhídrico preparada.
 - (b) el pH de la disolución que resulta de mezclar 50 mL de la disolución diluida de ácido clorhídrico con 25 mL de una disolución de hidróxido de sodio 0,10 M.
- 2. En un recipiente de 0,5 L se colocan 0,075 mol de pentacloruro de fósforo gas (PCl₅). Se calienta a una temperatura determinada hasta que se alcanza el equilibrio: PCl₅(g) ≒ PCl₃(g) + Cl₂(g). Si en las condiciones de equilibrio el PCl₅ está disociado en un 62,5%, calcule:
 - (a) la concentración molar de cada especie química en el equilibrio.
 - (b) el valor de Kc.
- 3. (a) Calcule el producto de solubilidad del cloruro de plata si su solubilidad es de 1,82 mg/L.
 - (b) Se produce la combustión completa de una bombona de butano (C₄H₁₀) que contiene 12 kg de dicho gas. Calcule los moles de butano que han reaccionado y la cantidad de agua que se produce.

Código: 32

PAU (MAIORES DE 25 ANOS) MARZO 2017

QUÍMICA

CUESTIÓNS [2 puntos cada unha] Resolva <u>TRES</u> das catro cuestións

RAZOE as respostas

- 1. Completa os seguintes equilibrios ácido-base de Brönsted-Lowry, indicando os correspondentes pares ácido-base conxugados:
 - (a)+ $H_2O = CO_3^{2-} + H_3O^+$
 - (b) $NH_4^+ + OH^- \leftrightarrows H_2O + \dots$
- 2. (a) Escriba os nomes e identifique os grupos funcionais das seguintes moléculas:

CH₃-CHOH-CH₃ CH₃-CO-CH₃

CH₃-COO-CH₃

CH₃-CH₂-NH₂

(b) Formule os seguintes compostos:

2-metil-1-propanol

ácido butanoico

etino

propanal

- 3. Indique se a 25°C son verdadeiras ou falsas as afirmacións seguintes:
 - (a) o ácido sulfúrico diluído reacciona co cobre e despréndese hidróxeno.

Datos: $E^{0}(Cu^{2+}/Cu) = +0.34 \text{ V}$; $E^{0}(Cu^{+}/Cu) = +0.52 \text{ V}$ e $E^{0}(H^{+}/H_{2}) = 0.00 \text{ V}$.

(b) o sodio é moi redutor e o flúor é un poderoso oxidante.

Datos:
$$E^{0}(Na^{+}/Na) = -2,71 \text{ V}$$
; $E^{0}(F_{2}/F) = +2,87 \text{ V}$.

- 4. Para a molécula do CH₄:
 - (a) debuxe as estruturas de Lewis.
 - (b) indique a xeometría segundo a teoría de repulsión de pares electrónicos da capa de valencia (TRPEV).

PROBLEMAS [2 puntos cada un]

Resolva **DOUS** dos tres problemas

- 1. Un mililitro dunha disolución de ácido clorhídrico de densidade 1,19 g/mL e 37% de riqueza en peso dilúese con auga destilada ata completar 100 mL. Calcule:
 - (a) a molaridade desta disolución diluída de ácido clorhídrico preparada.
 - (b) o pH da disolución que resulta de mesturar 50 mL da disolución diluída de ácido clorhídrico con 25 mL dunha disolución de hidróxido de sodio 0,10 M.
- 2. Nun recipiente de 0,5 L colócanse 0,075 mol de pentacloruro de fósforo gas (PCl₅). Quéntase a unha temperatura determinada ata que se alcanza o equilibrio: PCl₅(g) ≒ PCl₃(g) + Cl₂(g). Se nas condicións de equilibrio o PCl₅ está disociado nun 62,5%, calcule:
 - (a) a concentración molar de cada especie química no equilibrio.
 - (b) o valor de Kc.
- 3. (a) Calcule o produto de solubilidade do cloruro de prata se a súa solubilidade é de 1,82 mg/L.
 - (b) Prodúcese a combustión completa dunha bombona de butano (C₄H₁₀) que contén 12 kg do devandito gas. Calcule os moles de butano que reaccionaron e a cantidade de auga que se produce.

Código: 32